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Abstract
In this work we show that the ordering ambiguity on quantization depends on
the representation choice. This property is then used to solve unambiguously
some particular systems. Finally, we speculate on the consequences for more
involved cases.

PACS number: 03.65.Ca

The problem of ordering ambiguity is one of the long-standing questions of quantum
mechanics. This question has attracted the attention of some of the founders of quantum
mechanics. Born and Jordan, Weyl, Dirac and von Newmann worked on this matter, as
can be verified from the excellent review by Shewell [1]. This is a difficult problem which
has advanced very little during the past few decades. Notwithstanding, as a consequence
of its importance in some experimental situations, such as impurities in crystals [2–4], the
dependence of nuclear forces on the relative velocity of two nucleons [5, 6], and more recently
the study of semiconductor heterostructures [7, 8], the interest in such kind of systems never
vanished. Furthermore, taking into account the spatial variation of the semiconductor type,
some effective Hamiltonians were proposed with a spatially dependent mass for the carrier
[9–14]. Finally, recently this matter appeared in some ordering problems [15] and equations
with spatially dependent masses [16], both related to D-branes in quantum field theories. Some
time ago we discussed the exact solvability of some classes of Hamiltonians with ordering
ambiguity [17]. In fact, the problem of the spatially dependent mass has been a growing
interest over the past few years [17–34].

Here we observe that there exists a different ordering dependence in different
representations, particularly we exploit this feature, by noting that in each one of the more
usual representations, the coordinate and the momentum one, there exist a family of classical
functions like f (x)g(p), whose quantization is unambiguous. Explicitly, the quantization
of (ax + b)g(p) is unambiguous in the momentum representation, and (cp + d)f (x) is
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unambiguous in the coordinate representation, where a, b, c, d are arbitrary constants. In
general, however, the function f (x)g(p) is ambiguous in both representations.

Let us now present the idea we are interested to develop in this work by illustrating it
through the study of a concrete example. For this, we remember that in [17] it was shown that
for a system whose quantum Hamiltonian has as one of its parts an operator version of the
classical function f (x)p the quantization is unambiguous in the coordinate representation. In
that representation its Hermitian operator counterpart can be written as

f (x)p → f α(x̂)p̂f β(x̂) + f β(x̂)p̂f α(x̂)

2
, (1)

where α + β ≡ 1. By using the usual coordinate representation for the operator p̂, and
manipulating the above operator in order to put it to the right, one can see that one obtains for
instance

f α(x̂)p̂f β(x̂) = f (x̂)p̂ − ih̄β
df (x̂)

dx̂
. (2)

Now, using the corresponding operator for f β(x̂)p̂f α(x̂), and then calculating the Hermitian
operator (1) with these features, one gets finally

f α(x̂)p̂f β(x̂) + f β(x̂)p̂f α(x̂)

2
= f (x̂)p̂ − ih̄

2

df (x̂)

dx̂
, (3)

from which we conclude that there is no ordering ambiguity in this representation and any
ordering used will conduce essentially to the same final answer, as observed in [17, 18].
However, despite being an important case of ordering, due to its application to the case of
the minimal gauge coupling, it cannot be used by itself as a Hamiltonian, at least as a usual
non-relativistic one, because the momentum appears linearly in it. Note, however, that in the
relativistic case of the Dirac equation [19], the momentum appears linearly and one can think
the spatial dependence as a consequence of the spacetime curvature [20].

At this point we introduce the main idea underlying this work, remembering that one could
interchange the role of x and p, and discussing the case of the quantization of the classical
function g(p)x in the momentum representation. It is not hard to conclude, through an
absolutely analogous analysis in the momentum representation, that the Hermitian quantization
of this function is unambiguous, and looks like

gα(p̂)x̂gβ(p̂) + gβ(p̂)x̂gα(p̂)

2
= g(p̂)x̂ +

ih̄

2

dg(p̂)

dp̂
. (4)

Note, however, that this operator is surely ambiguous in the coordinate representation. From
the above calculation we can conclude that the ordering ambiguity has a dependence on the
choice of representation and, as far we know, this feature was not taken into account in the
literature up to now. Furthermore, this last operator can be thought of as a Hamiltonian if we
choose g(p̂) = p̂2. In this special case, we would have a system with a mass dependence in
the spatial coordinate

(
m(x) ∼ 1

x

)
. This is an example of a Hamiltonian which is ambiguous

in the coordinate representation and not in the momentum one. In cases like this, one could
calculate the wave function in the momentum representation and then transform it through

ψ(x, t) = 1√
2πh̄

∫
dpψ̃(p, t) e

i
h̄
px (5)

to the coordinate representation if necessary.
For the sake of concreteness, from now on we discuss this case with more details. Firstly,

the time-independent wave function equation in the momentum representation is given by

ih̄p2 dψ̃(p)

dp
+ ih̄pψ̃(p) = Eψ̃(p). (6)
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After a straightforward calculation, one obtains for the unambiguous wave function in the
momentum representation

ψ̃(p) = N
e( i

h̄
E
p

)

p
, (7)

where N is an arbitrary integration constant. We can now calculate its Fourier transform,
in order to obtain the corresponding coordinate representation wave function. So, we must
perform the following integration

ψ(x) = N√
2πh̄

∫ ∞

−∞

dp

p
e[ i

h̄
( E

p
+px)]

. (8)

In order to reach this goal, we separate the integral in two sectors, that for the positive p and
that for the negative ones. So we get

ψ(x) = N√
2πh̄

{∫ 0

∞

dp

p
e−[ i

h̄
( E

p
+px)] +

∫ ∞

0

dp

p
e[ i

h̄
( E

p
+px)]

}
, (9)

which after some manipulations can be rewritten as

ψ(x) = 2iN√
2πh̄

∫ ∞

0

dp

p
sin

[
i

h̄

(
E

p
+ px

)]
. (10)

Then, after using the usual trigonometric identities and the known result∫ ∞

0

du

u
sin(au) cos

(
b

u

)
= π

2
J0

(
2(a2b2)

1
4
) =

∫ ∞

0

du

u
sin

(
b

u

)
cos(au), (11)

where J0(z) is the Bessel function of the first kind. One obtains finally that

ψ(x) =
√

2π

h̄
iNJ0

(
2

h̄

√
|Ex|

)
. (12)

Had we started in the coordinate representation, the wave function equation to be solved
would have been

x2 d2ψ(x)

dx2
+ x

dψ(x)

dx
− αγψ(x) = −

(
E

h̄2

)
xψ(x), (13)

where we ordered the operator coming from xp2 using

Op ≡ 1
2 (x̂αp̂x̂β p̂x̂γ + x̂γ p̂x̂β p̂x̂α) = x̂p̂2 − ih̄p̂ + αγ x̂−1, (14)

and we used that α + β + γ = 1. It can be noted that if we make the variable transformation
|x| = h̄2

4E
w, the above equation can be cast in the form

w2 d2ψ

dw2
+ w

dψ

dw
+ (w2 − 4αγ )ψ = 0, (15)

which is the differential equation of the first kind Bessel function. So, we get finally that in
the coordinate representation the ambiguous wave function is expressed as

ψ(x) = ÑJαγ

(
2

h̄

√
|Ex|

)
, (16)

once E is positive definite. We conclude that the compatibility of the solutions coming from
the two representations requires us to fix one of the parameters appearing in the index of the
Bessel function (α = 0 or γ = 0) in the coordinate representation. At this point we should
say that one could work with a little bit more general model, where 2m(x) = (ax + b)−1.
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It is not difficult to verify, after straightforward and analogous calculations, that one ends
correspondingly in this situation to

ψ(x) = ÑJ0

(
2

h̄

√∣∣∣∣E
(

x +
b

a

)∣∣∣∣
)

. (17)

As a consequence of the symmetry between these parameters in the operator definition, it
is equivalent to choose any of them equal to zero. Choosing to make γ = 0, we conclude that
β = 1 − α, and we end with a subclass of operators, compatibles in both representations,

Oα = 1
2 (x̂αp̂x̂1−αp̂ + p̂x̂1−αp̂x̂α). (18)

Note that the case of the Li and Khun ordering [13], which it was shown to be equivalent to
the Weyl ordering [17, 18], corresponds to the choice α = 1

2 .
Below we are going to prove that, in fact, there is no remaining ambiguity because all

choices of α are equivalent. For this we note that

x̂αp̂x̂1−αp̂ =
√

x̂p̂
√

x̂p̂ + ih̄

(
α − 1

2

)
p̂,

p̂x̂1−αp̂x̂α = p̂
√

x̂p̂
√

x̂ − ih̄

(
α − 1

2

)
p̂,

(19)

so that the operator Oα is simply rewritten as

Oα = 1
2 (

√
x̂p̂

√
x̂p̂ + p̂

√
x̂p̂

√
x̂) = OWeyl. (20)

So we have finally demonstrated that, at least for this particular case, we have been able
to avoid the ordering ambiguity by working in the momentum representation. In fact, this
conclusion is still true if we include a binding potential energy in the original Hamiltonian.
Furthermore, we have shown that this unambiguous quantization corresponds to the so-called
Weyl ordering. One can show also that, for a given class of potentials, the problem can be even
exactly solvable. Let us illustrate this argument through the study of a particular example,
where the calculations can be done analytically up to the very end. The classical Hamiltonian
to be considered next is

H = (ax + b)p2 + V (x), (21)

which in the coordinate representation (using α = 0 or γ = 0) renders the time-independent
equation

−h̄2(ax + b)
d2ψ

dx2
− h̄2 dψ

dx
+ V (x)ψ = Eψ, (22)

where V (x) = A/(x + b/a) + Bx. It is important to remark at this point that we fixed the
ambiguity parameters as stated above, because we infer that the form of the potential should
not change the choice of the ambiguity parameters, and those parameters were fixed when
treating the free case in above. By making a translation (x = y + b/a), one can rewrite the
above equation in the form

−y
d2ψ(y)

dy2
− 1

a

dψ(y)

dx
+

(
Ā

y
− B̄y

)
ψ(y) = Ēψ(y), (23)

with Ā ≡ A/(h̄2a), B̄ ≡ B/(h̄2a) and Ē ≡ (E + bB/a)/(h̄2a). The above equation presents
the following solution which is non-singular at the origin

ψ(y) = Nyg e−
√

B̄y

1 F1

[
1

2

(
− Ē√

B̄
+

1

a

√
(a − 1)2 + 4Āa2 + 1

)
;

1

a

√
(a − 1)2 + 4Āa2 + 1; 2

√
B̄y

]
, (24)
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where we defined that g ≡ 1
2a

(√
(a − 1)2 + 4Ā + (a − 1)

)
, and N is a normalization constant.

The requirement that the confluent hypergeometric function becomes a polynomial imposes
the restriction which determines que quantization of the eigen-energies, so that

1

2

(
− Ē√

B̄
+

1

a

√
(a − 1)2 + 4Āa2 + 1

)
= −n, (25)

and this leads us to the energy spectrum

En = h̄

√
B

a

(
(2n + 1)a +

√
(a − 1)2 +

4A

h̄2

)
− bB

a
. (26)

As an additional example, we could be tempted to include in the discussion a classical term
like pf (x). Unfortunately, however, it is unambiguous only in the coordinate representation,
so that it ruins this property in the momentum one.

Finally, it is interesting to see that, in some very recent papers, it was adjudicated in favour
of a Schroedinger equation in a phase-space representation, where appears a very interesting
kind of mixing between the usual coordinate and momentum representations [35, 36]. It
would be very interesting to see if this generalized representation could be useful in some
particular problem, where there exists ordering ambiguity in both coordinate and momentum
representations and maybe not in this new representation.
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Physique)
[8] Weisbuch C and Vinter B 1993 Quantum Semiconductor Heterostructures (New York: Academic)
[9] BenDaniel D J and Duke C B 1966 Phys. Rev. B 152 683

[10] Zhu Q G and Kroemer H 1983 Phys. Rev. B 27 3519
[11] Gora T and Williams F 1969 Phys. Rev. 177 1179
[12] Bastard G 1981 Phys. Rev. B 24 5693
[13] Li T L and Kuhn K J 1993 Phys. Rev. B 47 12760
[14] Cavalcante F S A, Costa Filho R N, Ribeiro Filho J, de Almeida C A S and Freire V N 1997 Phys. Rev.

B 55 1326
[15] Feng B, He Y H and Lam F 2004 Nucl. Phys. B 701 334
[16] Ramgoolam S, Spence B and Thomas S 2005 Nucl. Phys. B 703 236
[17] de Souza Dutra A and de Almeida C A S 2000 Phys. Lett. A 275 25
[18] Gönül B, Gönül B, Tuctu D and Özer O 2002 Mod. Phys. Lett. A 17 2057
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